An associative knowledge network model for interpretable semantic representation of noun context

نویسندگان

چکیده

Abstract Uninterpretability has become the biggest obstacle to wider application of deep neural network, especially in most human–machine interaction scenes. Inspired by powerful associative computing ability human brain system, a novel interpretable semantic representation model noun context, knowledge network model, is proposed. The proposed structure composed only pure relationships without relation label and dynamically generated analysing neighbour between words text, which incremental updating reduction reconstruction strategies can be naturally introduced. Furthermore, method designed for practical problem checking coherence context. In method, learned from text corpus first regarded as background then multilevel contextual coupling degree features given detection document are computed. Finally, location those inconsistent realized using an classification such decision tree. Our sufficient experimental results show that above obtain excellent performance completely reach or even partially exceed obtained latest methods F1 score metric. addition, natural interpretability learning our should extremely valuable than methods. So, this study provides very enlightening idea developing machine methods, tasks writing error detection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Semantic Representation: A Generative Model for Interpretable Knowledge Graph Embedding

Knowledge representation is a critical topic in AI, and currently embedding as a key branch of knowledge representation takes the numerical form of entities and relations to joint the statistical models. However, most embedding methods merely concentrate on the triple fitting and ignore the explicit semantic expression, leading to an uninterpretable representation form. Thus, traditional embedd...

متن کامل

Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion

In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...

متن کامل

An Interpretable Knowledge Transfer Model for Knowledge Base Completion

Knowledge bases are important resources for a variety of natural language processing tasks but suffer from incompleteness. We propose a novel embedding model, ITransF, to perform knowledge base completion. Equipped with a sparse attention mechanism, ITransF discovers hidden concepts of relations and transfer statistical strength through the sharing of concepts. Moreover, the learned association...

متن کامل

an application of equilibrium model for crude oil tanker ships insurance futures in iran

با توجه به تحریم های بین المملی علیه صنعت بیمه ایران امکان استفاده از بازارهای بین المملی بیمه ای برای نفتکش های ایرانی وجود ندارد. از طرفی از آنجایی که یکی از نوآوری های اخیر استفاده از بازارهای مالی به منظور ریسک های فاجعه آمیز می باشد. از اینرو در این پایان نامه سعی شده است با استفاده از این نوآوری ها با طراحی اوراق اختیارات راهی نو جهت بیمه گردن نفت کش های ایرانی ارائه نمود. از آنجایی که بر...

An Interpretable Lstm Neural Network for Autoregressive Exogenous Model

In this paper, we propose an interpretable LSTM recurrent neural network, i.e., multi-variable LSTM for time series with exogenous variables. Currently, widely used attention mechanism in recurrent neural networks mostly focuses on the temporal aspect of data and falls short of characterizing variable importance. To this end, our multi-variable LSTM equipped with tensorized hidden states is dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex & Intelligent Systems

سال: 2022

ISSN: ['2198-6053', '2199-4536']

DOI: https://doi.org/10.1007/s40747-022-00757-y